segunda-feira, 18 de abril de 2011

Mecânica dos Fluídos

Propriedades físicas dos fluidos hidráulicos
 As propriedades dos fluidos hidráulicos relevantes para o estudo do escoamento dos fluidos são a massa volúmica, a tensão superficial, a viscosidade, e restantes propriedades reológicas.


Teoria: Os fluidos respeitam a conservação de massa, quantidade de movimento ou momentum linear e momentum angular, de energia, e de entropia. A conservação de quantidade de movimento é expressa pelas equações de Navier Stokes. Estas equações são deduzidas a partir de um balanço de forças/quantidade de movimento a um volume infinitesimal de fluido, também denominado de elemento representativo de volume.
Atualmente, o estudo, análise e compreensão da fenomenologia da maior parte dos problemas em dinâmica de fluidos e em transferência de calor, como macro-áreas que compõem a dinâmica de fluidos, são desenvolvidos através da Modelagem Computacional. Nesta, um modelo matemático é desenvolvido, com base na fenomenologia do problema considerado. A partir deste modelo, geralmente um sistema de equações diferenciais parciais ou equações diferenciais ordinárias, é desenvolvido um modelo computacional ou utilizado um código computacional comercial, para a execução de simulações numéricas, em fluidodinâmica computacional, obtendo-se assim projeções temporais da solução do problema. Esta solução é condicionado pelas condições iniciais e condições de contorno do problema, que estabelecem as condições de evolução deste no tempo e no espaço.
A Teoria do Contínuo fundamenta a conceituação teórica que justifica a maior parte das análise em CFD. O fluido, um meio contínuo, é discretizado com base no modelo das partículas fluidas. Esta abstração conceitua um elemento representativo de volume (representative element of volume, REV). Neste elemento de volume, de micro ou nano dimensões, uma propriedade ou quantidade física mantem um valor médio, sob as mesmas condições, passível de reprodução em laboratório, sob as mesmas solicitações externas ao fluido. Assim uma partícula representativa de um volume de fluido, o REV, é o menor volume em que as propriedades do fluido se mantém. As moléculas de um contínuo vibram constantemente, cessando esta vibração somente no estado de repouso termodinâmico, o zero absoluto. Fisicamente em um REV o caminho médio percorrido pelas moléculas do fluido entre duas sucessivas é no mínimo da ordem de grandeza das próprias moléculas deste fluido.
Hoje em dia os modernos aviões usam um artifício para driblar a formação de vórtices nas pontas das asas, como o winglet, um pequeno leme na extremidade da asa, permitindo que pelo menos um metro e meio de asa seja aproveitada na sustentação da aeronave, que é perdida para os vórtices que se formam na sua ausência. O vórtice ocorre quando o ar mais denso que flui abaixo da asa escapa para a parte superior menos densa, prejudicando sua sustentação naquela ponta de asa. Vórtices no sentido horário surgem na ponta da asa esquerda, anti-horário na asa direita. Nos profundores não se formam vórtices, pois não há diferença entre densidades do ar nos dois lados da empena.[carece de fontes?]
Experiências recentes dão conta de que uma superfície irregular da fuselagem, tipo "bola de golfe", com aqueles sulcos em concha, tem mais fluidodinâmica do que a mesma superfície quando plana e polida. Este efeito se verifica com as asas das aves, onde a superfície apresenta um arrasto mínimo, mesmo com a aparente irregularidade das penas.
Também se faz experiência com bordos de ataque enrugados, tais como as nadadeiras de uma baleia, com reais vantagens para as mesmas áreas quando lisas e retas, por exemplo. Em ambos os casos, diminui-se a resistência do meio e melhora a performance e o consumo de energia de empuxo.
Os navios mais rápidos hoje construídos são aqueles em que o roda de proa (chapa enformada onde convergem a quilha, as balizas reviradas e as longarinas de proa; que é a parte do navio que corta a água) possui uma longa protuberância ogival abaixo da linha d'água, que permite uma excelente hidrodinâmica ao anular a formação das ondas com outras ondas de valores contrários.

Tipos de escoamentos
 Os escoamentos podem ser classificados quanto à compressibilidade e quanto ao grau de mistura macroscópica.
Um escoamento em que a densidade do fluido varia significativamente é um escoamento compressível. Se a densidade não variar significativamente então o escoamento é incompressível.
O grau de mistura de um fluido em escoamento depende do regime de escoamento, que pode ser laminar, turbulento ou de transição.
No regime laminar, as linhas de fluxo são paralelas ao escoamento, fazendo com que o fluido escoe sem que ocorra mistura. Em um duto circular, o escoamento é laminar até um valor de Reynolds de aproximadamente 2100.
Na transição entre os regimes laminar e turbulento, percebe-se que as linhas de fluxo se tornam onduladas, o que indica que começa a haver mistura entre uma camada e outra. Para um duto circular, esse regime ocorre para um valor de Re entre 2100 e 2300.
Para valores de Re acima de 2300, têm-se regime turbulento. Nesta fase, percebe-se uma mistura entre as camadas de fluxo.
 Métodos experimentais
O escoamento de fluidos é actualmente estudado por velocimetria laser e por velocimetria por imagem de partículas.

 Abordagem computacional
A dinâmica de fluidos tem sido solicitada a fornecer soluções a problemas complexos em hidrodinâmica, projetos de edificações, aeronaves, navios e veículos espaciais, em hemodinâmica e em biofísica. Nestas áreas a obtenção e o de tratamento de soluções considera um elevado número de dados, informações e variáveis, resultando em densos sistemas de equações. A modelagem computacional propõe um conjunto de métodos e técnicas para a abordagem destes problemas.

Leis da Hidrodinâmica
Por forma a melhor compreender a física do deslocamento de fluidos em regime não turbulento, criou-se uma série de leis, que levaram à equação de Bernoulli. O que se estabelece segundo a equação é que



                                               



em que C é um valor relativo e constante, p é uma pressão relativa de outro ponto, h corresponde à diferença de alturas entre eles, e v à diferença de velocidades a que se encontram. A equação de Bernoulli está de certo modo relacionada com o porquê dos aviões voarem, e das garrafas de perfume expelirem líquido quando pressionadas.

O que se passa com as asas do avião é que a sua periferia é feita de tal forma que o ar que passa por cima da asa tem que percorrer um maior percurso em relação ao ar que passa por baixo da asa. Ou seja, o ar sobre a asa move-se a uma velocidade maior. Dado este fato, a equação de Bernoulli prediz que a pressão acima da asa torna-se menor que abaixo da asa e, por este motivo, a uma determinada velocidade, a diferença de pressão é suficiente grande para fazer o avião levantar vôo.

O mesmo se passa no perfume: ao passar sobre a "boca" do frasco, o tubo estreita-se, sendo o ar nesse ponto obrigado a circular a uma velocidade maior. Assim, isso cria uma variação de pressão que empurra o perfume para a sua superfície, sendo depois disparado para o ar.

As equações de Bernoulli não possuem aplicação soberana na mecânica dos fluidos. As complexas Equeções de Navier-Stokes são também utilizadas na análise da Mecânica dos fluidos.

Elas são não lineares e com uma infinidade de soluções não-analíticas, ou seja, somente obtidas com aporte computacional. São equações que relacionam densidade dos fluidos, acelerações, variação de pressão, viscosidade e gradientes de velocidade.

Contudo, estas equações podem aproximar boas soluções algébricas quando feitas as devidas aproximações. Assumir, por exemplo, que o fluido é incompressível e sem viscosidade (idealização) faz com que estas equações sejam simplificadas e permitem soluções mais sãs.[

sábado, 9 de abril de 2011

Circuitos Elétricos

A corrente elétrica é formada por elétrons livres em movimento organizado. A energia elétrica transportada pela corrente nada mais é do que a energia cinética dos elétrons. Assim, nos circuitos elétricos, a energia cinética dos elétrons livres pode transformar-se em energia luminosa ou em energia cinética dos motores, por exemplo.



Ao percorrer o circuito, do pólo negativo da pilha até o pólo positivo, os elétrons livres perdem totalmente a energia que transportavam. E sem a reposição dessa energia não seria possível a permanência de uma corrente elétrica.
A função de uma pilha é, portanto, fornecer a energia necessária aos elétrons livres do fio, para que eles permaneçam em movimento.
Dentro da pilha, os elétrons adquirem energia ao serem levados do pólo positivo ao negativo. Ao chegarem ao pólo negativo, movimentam-se novamente pela parte externa do circuito até alcançarem o pólo positivo, e assim sucessivamente.



Ao levar um certo número de elétrons do pólo positivo para o negativo, a pilha cede a eles uma certa quantidade de energia. O valor da energia que esses elétrons recebem, dividido pela quantidade de carga que eles têm, é a tensão elétrica existente entre os pólos da pilha. Nas pilhas comuns, esse valor é 1,5 volt.



Em geral, um circuito elétrico é constituído por um conjunto de componentes ligados uns aos outros e conectados aos pólos de um gerador. Uma bateria de carro ou uma pilha, pode funcionar como gerador


Circuito de uma lanterna de mão


Você alguma vez já desmontou complemente uma lanterna de mão para analisar como ela funciona?

Veja na ilustração abaixo como são dispostas as várias partes de uma típica lanterna de mão:



Estrutura de uma lanterna elétrica

Ö Por que o projetista escolheu essa particular combinação de materiais?


As partes metálicas da lanterna são postas para conduzir a corrente elétrica quando a lanterna é posta para funcionar e, além disso, foram escolhidas para resistirem aos esforços físicos aos quais são submetidas.


A mola metálica, por exemplo, não só permite caminho elétrico para a corrente como também mantém no lugar, sob pressão, as pilhas em seu interior. As partes metálicas do interruptor têm que garantir bom contato elétrico e não ficarem danificadas pelo uso contínuo.


Uma lanterna também tem partes feitas com material não condutor de corrente elétrica, tais como plásticos e borrachas. A cobertura de plástico dessa lanterna é um isolante elétrico. Sua forma é importante para que se tenha um manuseio cômodo. Sua cor a tornará mais ou menos atraente aos olhos do usuário.


Como você verá, os circuitos elétricos conterão sempre partes que conduzem e partes que não conduzem correntes elétricas. O segredo todo, nos circuitos elétricos, é delimitar um caminho pré planejado para a corrente.


A lâmpada incandescente e o refletor compõem o sistema óptica da lanterna. A posição da lâmpada dentro do refletor deve ser tal que permita a obtenção de um feixe estreito de luz.


Uma lanterna é um produto elétrico simples, mas muita gente já perdeu noites de sono em seus projetos para que você tenha um dispositivo que trabalhe bem.


Ö Você pode pensar em alguma outra coisa que o projetista deva levar em consideração na produção em massa de lanternas?


Um modo "mais científico" para descrever uma lanterna implica no uso de um diagrama de circuito. Nele, as partes relevantes da lanterna serão representadas através de símbolos:



Diagrama de circuito de uma lanterna elétrica

Nesse circuito foram representadas simbolicamente, duas células voltaicas (pilhas) ¾ formando uma bateria ¾, um interruptor e uma lâmpada incandescente. As linhas no diagrama representam condutores metálicos (fios) que conectam as partes entre si formando o circuito completo.


Um circuito elétrico é necessariamente um percurso fechado. Na lanterna, o fechamento do interruptor completa o circuito, permitindo a passagem da corrente elétrica.

Lanternas às vezes falham! Isso acontece quando as partes metálicas do interruptor ou da lâmpada não entram efetivamente em contato (devido à sujeiras ou ferrugens), quando a lâmpada "queima" (interrupção em seu filamento) ou quando as pilhas "pifam" (esgotam suas energias químicas armazenadas, popularmente, ficam 'descarregadas'). Em qualquer um desses casos, o circuito estará incompleto.


Corrente elétrica

Uma corrente elétrica é um fluxo ordenado de partículas carregadas (partículas dotadas de carga elétrica). Em um fio de cobre, a corrente elétrica é formada por minúsculas partículas dotadas de carga elétrica negativa, denominadas elétrons -- eles são os portadores da carga elétrica.


No fio de cobre (ou de qualquer outro metal) os elétrons naturalmente lá existentes vagueiam desordenadamente (têm sentidos de movimentos aleatórios) até que, por alguma ordem externa, alguns deles passam a caminhar ordenadamente (todos no mesmo sentido) constituindo a corrente elétrica. A intensidade dessa corrente elétrica vai depender de quantos desses portadores, em movimento bem organizado passam, por segundo, por um região desse fio.


A corrente elétrica, num circuito, é representada pela letra I e sua intensidade poderá ser expressa em ampères (símbolo A), em miliampères (símbolo mA) ou outros submúltiplos tal qual o microampères (símbolo mA).


Um ampère (1 A) é uma intensidade de corrente elétrica que indica a passagem de 6,2x1018 elétrons, a cada segundo, em qualquer seção do fio. Esses 6,2x1018 elétrons (uma quantidade que escapa ao nosso pensamento) transportam uma carga elétrica total cujo valor é de um coulomb (1 C). 'coulomb'(símbolo C) é a unidade com que se medem as quantidades de cargas elétricas.


Se indicarmos a quantidade total de carga elétrica que passa pela seção de um fio por Q (medida em coulombs) e o intervalo de tempo que ela leva para passar por essa seção por Dt (medido em segundos), a intensidade de corrente elétrica I (medida em ampères) será calculada por:


I = Q : Dt

CONVERSÕES

1 A = 1 000 mA = 1 000 000 mA Þ 1 A = 103 mA = 106 mA
1 mA = 1/1 000 A = 1 000 mA Þ 1 mA = 10-3 A = 103 mA
1 mA = 1/1 000 000 A = 1/1000 mA Þ 1 mA = 10-6 A = 10-3 mA


Teoria de Circuitos


Desenvolvida a partir de medidas experimentais dos fenômenos elétricos.


Atualmente, pode ser vista como uma simplificação da Teoria Eletromagnética (Leis de Maxwell).


É apresentada como concebida por Kirchhoff.


Conceitos fundamentais: corrente e tensão elétricas.



Bipolo

Dispositivo contendo 2 terminais condutores

Bipolo

A cada bipolo estão associadas uma corrente (que o atravessa) e uma tensão (entre seus terminais).


Fontes de tensão dependentes

Bipolo cuja tensão entre os terminais não depende da corrente que o atravessa, mas sim da tensão ou corrente em um outro bipolo.



Fontes de corrente dependentes

Bipolo cuja corrente que o atravessa não depende da tensão entre seus terminais, mas sim da tensão ou corrente em um outro bipolo.




Exemplo: Modelo de transistor com emissor comum



LEI DAS CORRENTES



Um ponto de ligação entre 2 ou mais bipolos.


Lei das Correntes ou 1 Lei de Kirchhoff

A soma algébrica das correntes que saem de um nó é nula.
Para um circuito com n nós, pode-se escrever n-1 equações de corrente independentes.


(redundante)


quinta-feira, 7 de abril de 2011

Automação Industrial

Automação industrial é a aplicação de técnicas, softwares e/ou equipamentos específicos em uma determinada máquina ou processo industrial, com o objetivo de aumentar a sua eficiência, maximizar a produção com o menor consumo de energia e/ou matérias primas, menor emissão de resíduos de qualquer espécie, melhores condições de segurança, seja material, humana ou das informações referentes a esse processo, ou ainda, de reduzir o esforço ou a interferência humana sobre esse processo ou máquina. É um passo além da mecanização, onde operadores humanos são providos de maquinaria para auxiliá-los em seus trabalhos.


Entre os dispositivos eletro-eletrônicos que podem ser aplicados estão os computadores ou outros dispositivos capazes de efetuar operações lógicas, como controladores lógicos programáveis, microcontroladores, SDCDs ou CNCs). Estes equipamentos em alguns casos, substituem tarefas humanas ou realizam outras que o ser humano não consegue realizar.

É largamente aplicada nas mais variadas áreas de produção industrial.

Alguns exemplos de máquinas e processos que podem ser automatizados são listados a seguir:


Indústria automobilística

Processos de estamparia (moldagem de chapas ao formato desejado do veículo)

Máquinas de solda

Processos de pintura

Indústria química

Dosagem de produtos para misturas

Controle de pH

Estações de tratamento de efluentes

Indústria de mineração

Britagem de minérios

Usinas de Pelotização

Carregamento de vagões

Indústria de papel e celulose

Corte e descascamento de madeira

Branqueamento

Corte e embalagem

Embalagens em todas as indústrias mencionadas

Etiquetado

Agrupado

Lacrado

Ensacado

A parte mais visível da automação, atualmente, está ligada à robótica, mas também é utilizada nas indústrias química, petroquímicas e farmacêuticas, com o uso de transmissores de pressão, vazão, temperatura e outras variáveis necessárias para um SDCD (Sistema Digital de Controle Distribuido) ou CLP (Controlador Lógico Programável). A Automação industrial visa, principalmente, a produtividade, qualidade e segurança em um processo. Em um sistema típico toda a informação dos sensores é concentrada em um controlador programável o qual de acordo com o programa em memória define o estado dos atuadores. Atualmente, com o advento de instrumentação de campo inteligente, funções executados no controlador programável tem uma tendência de serem migradas para estes instrumentos de campo. A automação industrial possui vários barramentos de campo ( mais de 10, incluindo vários protocolos como: CAN OPEN, INTERBUS-S, FIELD BUS FOUNDATION, MODBUS, STD 32, SSI, PROFIBUS, DEVICENET etc) específicos para a área industrial (em tese estes barramentos se assemelham a barramentos comerciais tipo ethernet, intranet, etc.), mas controlando equipamentos de campo como válvulas, atuadores eletromecânicos, indicadores, e enviando estes sinais a uma central de controle conforme descritos acima. A partir destes barramentos que conversam com o sistema central de controle eles podem também conversar com o sistema administrativo da empresa conforme mostrado no parágrafo abaixo.

Uma contribuição adicional importante dos sistemas de Automação Industrial é a conexão do sistema de supervisão e controle com sistemas corporativos de administração das empresas. Esta conectividade permite o compartilhamento de dados importantes da operação diária dos processos, contribuindo para uma maior agilidade do processo decisório e maior confiabilidade dos dados que suportam as decisões dentro da empresa para assim melhorar a produtividade.

CLP - Controlador lógico programável

Um Controlador lógico programável ou Controlador programável, conhecido também por suas siglas CLP ou CP e pela sigla de expressão inglesa PLC (Program logic controller), é um computador especializado, baseado num microprocessador que desempenha funções de controle através de softwares desenvolvidos pelo usuário (cada CLP tem seu próprio software)PB - controlePE de diversos tipos e níveis de complexidade. Geralmente as famílias de Controladores Lógicos Programáveis são definidas pela capacidade de processamento de um determinado numero de pontos de Entradas e/ou Saídas (E/S).
Controlador Lógico Programável Segundo a ABNT (Associação Brasileira de Normas Técnicas), é um equipamento eletrônico digital com hardware e software compatíveis com aplicações industriais. Segundo a NEMA (National Electrical Manufacturers Association), é um aparelho eletrônico digital que utiliza uma memória programável para armazenar internamente instruções e para implementar funções específicas, tais como lógica, seqüenciamento, temporização, contagem e aritmética, controlando, por meio de módulos de entradas e saídas, vários tipos de máquinas ou processos.


Um CLP é o controlador indicado para lidar com sistemas caracterizados por eventos discretos (SEDs), ou seja, com processos em que as variáveis assumem valores zero ou um (ou variáveis ditas digitais, ou seja, que só assumem valores dentro de um conjunto finito). Podem ainda lidar com variáveis analógicas definidas por intervalos de valores de corrente ou tensão elétrica. As entradas e/ou saídas digitais são os elementos discretos, as entradas e/ou saídas analógicas são os elementos variáveis entre valores conhecidos de tensão ou corrente.
Os CLP's estão muito difundidos nas áreas de controle de processos ou de automação industrial. No primeiro caso a aplicação se dá nas industrias do tipo contínuo, produtoras de líquidos, materiais gasosos e outros produtos, no outro caso a aplicação se dá nas áreas relacionadas com a produção em linhas de montagem, por exemplo na indústria do automóvel.

Num sistema típico, toda a informação dos sensores é concentrada no controlador (CLP) que de acordo com o programa em memória define o estado dos pontos de saída conectados a atuadores.

Os CLPs tem capacidade de comunicação de dados via canais seriais. Com isto podem ser supervisionados por computadores formando sistemas de controle integrados. Softwares de supervisão controlam redes de Controladores Lógicos Programáveis.

Os canais de comunicação nos CLP´s permitem conectar à interface de operação (IHM), computadores, outros CLP´s e até mesmo com unidades de entradas e saídas remotas. Cada fabricante estabelece um protocolo para fazer com seus equipamentos troquem informações entre si. Os protocolos mais comuns são Modbus (Modicon - Schneider Eletric), EtherCAT (Beckhoff), Profibus (Siemens), Unitelway (Telemecanique - Schneider Eletric) e DeviceNet (Allen Bradley), entre muitos outros.

Redes de campo abertas como PROFIBUS-DP são de uso muito comum com CLPs permitindo aplicações complexas na indústria automobilística, siderurgica, de papel e celulose, e outras.


quarta-feira, 6 de abril de 2011

Conceito Básico à introdução

A mecatrônica enfatiza o gerenciamento e o controle da complexidade dos processos de indústrias modernas que exigem ferramentas sofisticadas para gerar em tempo real seus diversos processos integrados.
Segundo o Comitê Assessor para Pesquisa e Desenvolvimento Industrial da Comunidade Europeia (IRDAC) "Mecatrônica é a integração sinergética da engenharia mecânica com a eletrônica e o controle inteligente por computador no projeto de processos e de manufatura de produtos". Em outras palavras, quer dizer que a mecatrônica é a junção da Engenharia mecânica com Eletrônica com um controle inteligente por computador, ou seja, é uma máquina que tem tanto partes mecânicas como partes elétricas e sensores que captam informações e as repassam para as partes mecânicas capazes de nos fornecer produtos, sistemas e processos melhorados.
Podemos considerar como um exemplo de sistema mecatrônico uma lavadora de roupas com porta-sabão automático. Esse porta-sabão sabe a quantidade de sabão que deve colocar em cada ciclo, pois ele "pesa" a quantidade de roupas que tem no cesto. Isso significa que ela sabe a quantidade de sabão a ser colocada porque existe um sensor abaixo do cesto da máquina que pesa a quantidade de roupas. Depois de pesar a roupa, um computador processa essa informação e nota quanto de roupa está dentro da máquina, então ele manda um comando para o atuador, que despeja a quantidade de sabão necessária para a lavagem correta.
A mecatrônica funciona como uma espécie de "futuro das engenharias". Inicialmente, o curso tem disciplinas comuns a qualquer engenharia: Cálculo, Física, Mecânica e elétrica básica. Na parte específica do curso, são introduzidas disciplinas que incluem circuitos lógicos, controle de sistemas mecânicos e automação industrial. Como várias das disciplinas do curso envolvem aspectos práticos e experimentais, elas naturalmente incluem aulas em laboratórios específicos.
Devemos também considerar no exercício da mecatrônica, conhecimentos aprofundados em materiais, suas ligas e propriedades físico-químicas. Tais características são fundamentais e determinarão a vida útil de um equipamento ou dispositivo mecatrônico.